
Citation: Cho, S.Y.; Delgado, R.; Choi,

B.W. Feasibility Study for a

Python-Based Embedded Real-Time

Control System. Electronics 2023, 12,

1426. https://doi.org/10.3390/

electronics12061426

Academic Editor: Alexander

Barkalov

Received: 20 February 2023

Revised: 14 March 2023

Accepted: 14 March 2023

Published: 16 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Feasibility Study for a Python-Based Embedded Real-Time
Control System
Se Yeon Cho 1 , Raimarius Delgado 2 and Byoung Wook Choi 1,*

1 Department of Electrical and Information Engineering, Seoul National University of Science and Technology,
Seoul 01811, Republic of Korea; seyeon@seoultech.ac.kr

2 Center for Intelligent & Interactive Robotics, Korea Institute of Science and Technology,
Seoul 02792, Republic of Korea; raim.delgado@kist.re.kr

* Correspondence: bwchoi@seoultech.ac.kr; Tel.: +82-02-970-6412

Abstract: Because of its simplicity and the support of numerous useful libraries, Python has become
one of the most popular programming languages for application development, even in embedded
systems. However, in existing control systems where specific tasks must meet specific temporal
deadlines and support schedulability with proper priority assignments, the Python interpreter may
not satisfy real-time requirements, owing to features such as the global interpreter lock and garbage
collector. This paper addresses these constraints with an approach that executes periodic real-time
tasks under the fixed-priority preemptible scheduler of RT-Preempt. First, we implemented a Python
real-time module that allows users to create and execute periodic tasks with fixed priorities based on
Python. Then, we conducted experiments on an open embedded system, in this case, a Raspberry
Pi 4. We evaluated the real-time performance, focusing on test metrics for control systems, such
as task periodicity, responsiveness, and interrupt response. The results were then compared to
those of conventional real-time tasks developed using the C language to validate the feasibility of
the proposed method. Finally, we performed experimental validation by tracking the position of
EtherCAT servo motors to demonstrate the feasibility of a Python-based real-time control system in a
practical application.

Keywords: Python; embedded systems; real-time; RT-Preempt; EtherCAT

1. Introduction

Python is an object-oriented, interpreted language that has gained popularity from
its easy access to many development packages, such as Numpy, OpenCV, TensorFlow,
and PyQT. Python also includes well-known modules for machine learning and scientific
computing [1,2]. In addition, with a very active community, Python has become the most
preferred programming language for project development over the last few years, ranking
first in the annual interactive rankings of IEEE Spectrum [3].

However, Python has disadvantages regarding speed and capacity, making it chal-
lenging to apply in embedded environments with limited computing power and resources.
Some researchers have proposed developing Python-based applications in embedded
fields, such as the IoT [4]. Still, these efforts need to address the real-time requirements
of embedded systems. Herein, real time refers to the ability to execute real-time tasks
bounded by hard temporal deadlines to ensure deterministic and predictable responses of
the entire system [5]. Real-time constraints should be considered to avoid any task failure,
which can result in system faults or, worse, physical damage and accidents [6,7].

Real-time operating systems (RTOSs) are mainly employed to develop real-time ap-
plications. RTOSs mainly offer low-level APIs available in C/C++ languages, owing to
their predictable runtime performance essential for reliable real-time execution. On the
other hand, an interpreted language, such as Python, is assumed unsuitable to meet these

Electronics 2023, 12, 1426. https://doi.org/10.3390/electronics12061426 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12061426
https://doi.org/10.3390/electronics12061426
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8540-4252
https://orcid.org/0000-0002-6759-4240
https://orcid.org/0000-0002-2404-7415
https://doi.org/10.3390/electronics12061426
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12061426?type=check_update&version=1

Electronics 2023, 12, 1426 2 of 14

demands because of its global interrupt lock and garbage collection processes [8]. There
have been attempts to improve the runtime speed of Python. For example, NumPy, short
for Numerical Python, integrates C/C++ and Fortran to execute vector and matrix oper-
ations without calling back into Python. In addition, Numba compiles Python code and
runs a faster version inside the typical interpreter runtime. Still, more is needed to meet the
temporal deadlines required in real-time systems.

Ionescu et al. [9] reported that MicroPython could be an alternative to C/C++ to reduce
the complexity of developing applications for embedded systems, employing MicroPython
in real-time systems. However, it still requires further resource management and garbage
collection optimizations. For example, Bucher et al. [10] developed the pysimCoder package
to design control systems in Python and generate the C/C++ code to be compiled for real-
time application. The common drawback of these studies is their limited—or complete
absence of—support for applications with multiple tasks (threads).

This paper describes a Python method for executing real-time periodical tasks un-
der the real-time Linux extension RT-Preempt using a POSIX Linker and the Ctypes
module [11,12]. The method is tested on a Raspberry Pi 4 device and evaluated through
various real-time performance analyses, including periodicity and interrupt latency [13].
The results are compared to those of the same program developed in C/C++. The paper
also demonstrates the feasibility of a Python-based real-time embedded control system by
performing servo motor control using the industrial Fieldbus EtherCAT [14–17]. This work
aims to provide a stepping-stone for easier integration of recent trends in machine learning
and numerical analysis on real-time systems for use in various fields, such as data analytics,
robotics, and industrial control. The main contributions of this study are as follows:

• The development of a Python method for executing real-time periodical tasks under the
real-time Linux extension RT-Preempt, using a POSIX Linker and the Ctypes module;

• An evaluation of the method on a Raspberry Pi 4 device through various real-time
performance analyses, including periodicity and interrupt latency;

• A comparison of the results to those of the same program developed in C/C++ to
validate the potential of the Python-based real-time system;

• A demonstration of the feasibility of a Python-based real-time embedded control
system by performing servo motor control using the industrial Fieldbus EtherCAT;

• Providing a stepping-stone for easier integration of recent trends in machine learning
and numerical analysis on real-time systems for use in various fields, such as data
analytics, robotics, and industrial control.

The rest of this document consists of the following: Section 2 presents and implements
the structure and implementation of Python-based real-time systems. Furthermore, experi-
ments are described and conducted to understand the performance and feasibility of the
proposed Python-based real-time system. The results of the experiment are then presented
and discussed. Section 3 uses EtherCAT to construct and experiment with systems for
real-time control of servo motors. The results also demonstrate the feasibility of Python-
based real-time systems presented in the study through analysis via probabilistic statistical
methods. Finally, Section 4 summarizes our findings and discusses future research.

2. Python-Based Real-Time System

This chapter describes the development environment and system configuration used
to implement the Python-based EtherCAT master and the architecture of the Python-based
EtherCAT master.

2.1. Python-Based Real-Time System Architecture

In this paper, Python-based embedded real-time systems are implemented using RT-
Preempt patched Linux kernel 5.10.110-rt63, capable of low-latency scheduling, and the
Debian 11 Bullseye file system. The real-time system architecture is described in Figure 1.
It consists of the hardware (H/W), operating system (OS), middleware, and task layers.

Electronics 2023, 12, 1426 3 of 14

Electronics 2023, 12, x FOR PEER REVIEW 3 of 14

2.1. Python-Based Real-Time System Architecture
In this paper, Python-based embedded real-time systems are implemented using RT-

Preempt patched Linux kernel 5.10.110-rt63, capable of low-latency scheduling, and the
Debian 11 Bullseye file system. The real-time system architecture is described in Figure 1.
It consists of the hardware (H/W), operating system (OS), middleware, and task layers.

Figure 1. Python-based real-time system architecture.

The H/W layer denotes the hardware platform on which the system is mounted. The
OS layer consists of the kernel and other development environment primitives, such as
the filesystem, RTOS, and APIs. The middleware layer is directly exposed to the task layer,
consisting of POSIX Wrapper, POSIX Linker, and Python. Its primary responsibility is to
wrap implementation into general user-space APIs so users can easily develop real-time
python applications without knowledge of the system internals.

The task layer in user space consists of tasks operating under real-time constraints
and can be implemented on a Python or native.

2.2. Interface Real-Time Library to Python
This paper uses POSIX Linker functions to extend Python’s real-time features. POSIX

Wrapper is a derivative of an ongoing project to develop an all-in-one solution for real-
time Linux environments with ideas such as RT-AIDE [18]. It is a C/C++-based real-time
dynamic link library inspired by popular RTOSs, such as FreeRTOS and Xenomai, imple-
mented using POSIX-API, which uses POSIX threads to create real-time tasks easily, man-
age real-time clocks and timers, and manage other interaction mechanisms, including
mutex, message queues, and semaphores. It is also a quality-controlled one using Google
Test (GTest) and Jenkins through unit testing, code coverage, and static analysis monitor-
ing.

POSIX Linker is the interface between the POSIX Wrapper and Python based on the
Ctypes package. Using Ctypes, the POSIX Wrapper objects and functions can be accessed
natively in Python. Table 1 shows the functions of POSIX Wrapper and its respective
POSIX Linker in Python.

Table 1. Functions to Create Real-time Tasks Using POSIX Wrapper and their Respective POSIX
Linker.

Functionality POSIX Wrapper POSIX Linker
Task Handler POSIX_TASK PY_POSIX_TASK
Task Creation create_rt_task py_create_rt_task

Start Execution start_task py_start_task
Set Task Timer set_task_period py_set_task_period

Wait Period wait_next_period py_wait_next_period

Figure 1. Python-based real-time system architecture.

The H/W layer denotes the hardware platform on which the system is mounted. The
OS layer consists of the kernel and other development environment primitives, such as the
filesystem, RTOS, and APIs. The middleware layer is directly exposed to the task layer,
consisting of POSIX Wrapper, POSIX Linker, and Python. Its primary responsibility is to
wrap implementation into general user-space APIs so users can easily develop real-time
python applications without knowledge of the system internals.

The task layer in user space consists of tasks operating under real-time constraints and
can be implemented on a Python or native.

2.2. Interface Real-Time Library to Python

This paper uses POSIX Linker functions to extend Python’s real-time features. POSIX
Wrapper is a derivative of an ongoing project to develop an all-in-one solution for real-
time Linux environments with ideas such as RT-AIDE [18]. It is a C/C++-based real-
time dynamic link library inspired by popular RTOSs, such as FreeRTOS and Xenomai,
implemented using POSIX-API, which uses POSIX threads to create real-time tasks easily,
manage real-time clocks and timers, and manage other interaction mechanisms, including
mutex, message queues, and semaphores. It is also a quality-controlled one using Google
Test (GTest) and Jenkins through unit testing, code coverage, and static analysis monitoring.

POSIX Linker is the interface between the POSIX Wrapper and Python based on the
Ctypes package. Using Ctypes, the POSIX Wrapper objects and functions can be accessed
natively in Python. Table 1 shows the functions of POSIX Wrapper and its respective POSIX
Linker in Python.

Table 1. Functions to Create Real-time Tasks Using POSIX Wrapper and their Respective
POSIX Linker.

Functionality POSIX Wrapper POSIX Linker

Task Handler POSIX_TASK PY_POSIX_TASK
Task Creation create_rt_task py_create_rt_task

Start Execution start_task py_start_task
Set Task Timer set_task_period py_set_task_period

Wait Period wait_next_period py_wait_next_period

Electronics 2023, 12, 1426 4 of 14

Task Handler consists of information for controlling and managing tasks, such as
process ID, name, stack size, period, and priority. Task creation generates a task handler
and stores the period, priority, stack size, and name information that are user-specified
arguments. In Start Execution, storing the user-typed function in a task handler, configuring
the task as the previously stored task information, and executing the user function are
conducted. Set Task Timer can store or change the task handler period information. Wait
Period is a time wait function that has an important function in creating periodicity, one of
the real-time features. This should be called within the function of a periodic task to wait
for the next scheduled entry point after the current iteration has expired. Read Time is a
function that reads the current system time, and the unit is nanosecond.

2.3. Performance in a Multi-Tasking Environment

This chapter compares the results of performing the same operation implemented on
C/C++ and Python to identify and validate the potential of the proposed Python-based
real-time system.

The platform and system configuration used for the experiment is as introduced in
Figure 1. In addition, we focused on two performance metrics determining stability and
reliability in real-time control applications.

First, we evaluated the periodicity and responsiveness to determine if we could
perform the task while meeting the specified deadline.

Second, we conducted an experiment to measure the interrupt response time. This
demonstrated the performance capabilities of embedded devices when interacting with
digital input/output device drivers. Finally, experimental data measurements were ob-
tained via software timing probes and through hardware to analyze actual system behavior
using an oscilloscope.

In addition, to build confidence that all of Python’s real-time extensions are suitable
for real-time applications, we measured the scheduling latency of each extension under the
influence of the interference load. In this respect, for example, we considered the two best
loads: CPU and memory. The interference load under consideration corresponds to the
CPU and memory load utilization of the stress-ng tool [19].

The stress-ng was configured to run multiple floating-point arithmetic operations in a
very tight infinite loop to simulate loads fully utilizing the CPU. A virtual memory stress
test is also performed. With the memory requirement for storing observed values, memory
stress can only occupy 70% of the system memory during the experiment.

2.3.1. Periodicity and Responsiveness

The periodicity of a real-time system means that each task is scheduled to operate
correctly at the predicted time, and responsiveness means that all tasks must be able to run
within a certain period. This can verify the task analysis real-time systems by measuring
both the period and worst response times [20].

The first experiment verifies the periodicity and responsiveness of each task among
several tasks and confirms that priority-based preemption occurs to understand the po-
tential of Python-based real-time systems. The task configuration for the experiment is
shown in Table 2 and uses three tasks with different periods, deadlines, execution times,
and priorities.

Table 2. Experiment Task Configuration.

Task Period (ms) Deadline (ms) Execution (ms) Priority

τ1 10 10 3 99
τ2 20 20 5 80
τ3 40 40 10 70

In RT-Preempt, 99 denotes the highest priority, and 1 is the lowest, and these three
tasks operate on an isolated CPU core 1. Low priority τ3 is configured to run every 40 ms,

Electronics 2023, 12, 1426 5 of 14

medium priority τ2 runs every 20 ms, and highest priority τ1 runs every 10 ms. As real-
time tasks are scheduled with fixed-priority and pre-emptive scheduling, the worst-case
response time (WCRT) can be calculated via rate monotonic analysis (RMA) [20].

Rk+1
i = Ci + Bi + ∑

j∈hp(i)

⌈
Rk

i
Pj

⌉
Cj (1)

Herein, C denotes the execution time, and B denotes the blocking time, which is the
time duration when a lower-priority task blocks higher-priority ones. The blocking time is
zero for all tasks as long as RT-Preempt is correctly configured and no locking mechanisms
are shared between the tasks. hp(i) is the set of all tasks with higher priorities than the
current task. The calculation for the WCRT requires the iteration of (1) until Rk+1

i = Rk
i or

Rk+1
i ≥ Di is satisfied. Take note that for the first iteration, the response time is equal to the

execution time. For the given real-time tasks, the WCRTs are calculated to be 3 ms, 8 ms,
and 29 ms, respectively.

In the configured tasks, the function loop is conducted on each task to perform two
performance metric measurements, such as actual period and response time. To simulate
the computational load and the configured run time, we burn CPU resources for 1 ms
and implement loop functions that are repeated until the required run time is completed.
We call this function spin. In addition, each task is configured to toggle the GPIO output
pin during every spin operation to measure the preemption and visualization through
the oscilloscope.

The experiment uses wiringPi for the GPIO control of Raspberry Pi 4, and measure-
ments are conducted for ten minutes to obtain sufficient sample measurement data. In
addition, both C/C++ and Python languages, used to implement real-time tests in RT-
Preempt, are used here to compare and analyze the periodicity and responsiveness during
the Python real-time tests through statistical measurements.

Figures 2 and 3 show the results after measuring the periodicity by implementing
real-time tests using Python and C/C++, respectively, and after measuring actual GPIO
signals using an oscilloscope.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 14

In RT-Preempt, 99 denotes the highest priority, and 1 is the lowest, and these three
tasks operate on an isolated CPU core 1. Low priority τ3 is configured to run every 40 ms,
medium priority τ2 runs every 20 ms, and highest priority τ1 runs every 10 ms. As real-
time tasks are scheduled with fixed-priority and pre-emptive scheduling, the worst-case
response time (WCRT) can be calculated via rate monotonic analysis (RMA) [20]. 𝑅 =  𝐶  𝐵   𝑅𝑃 𝐶 ∈ (1)

Herein, C denotes the execution time, and B denotes the blocking time, which is the
time duration when a lower-priority task blocks higher-priority ones. The blocking time
is zero for all tasks as long as RT-Preempt is correctly configured and no locking mecha-
nisms are shared between the tasks. hp(i) is the set of all tasks with higher priorities than
the current task. The calculation for the WCRT requires the iteration of (1) until 𝑅 =𝑅 or 𝑅 𝐷 is satisfied. Take note that for the first iteration, the response time is
equal to the execution time. For the given real-time tasks, the WCRTs are calculated to be
3 ms, 8 ms, and 29 ms, respectively.

In the configured tasks, the function loop is conducted on each task to perform two
performance metric measurements, such as actual period and response time. To simulate
the computational load and the configured run time, we burn CPU resources for 1 ms and
implement loop functions that are repeated until the required run time is completed. We
call this function spin. In addition, each task is configured to toggle the GPIO output pin
during every spin operation to measure the preemption and visualization through the
oscilloscope.

The experiment uses wiringPi for the GPIO control of Raspberry Pi 4, and measure-
ments are conducted for ten minutes to obtain sufficient sample measurement data. In
addition, both C/C++ and Python languages, used to implement real-time tests in RT-
Preempt, are used here to compare and analyze the periodicity and responsiveness during
the Python real-time tests through statistical measurements.

Figures 2 and 3 show the results after measuring the periodicity by implementing
real-time tests using Python and C/C++, respectively, and after measuring actual GPIO
signals using an oscilloscope.

Figure 2. Real−time task periodicity using the oscilloscope in Python. Figure 2. Real−time task periodicity using the oscilloscope in Python.

The figure of the waveforms uses a method of toggling GPIO when the task is running.
It can be observed that for a single hyper-period, τ1 runs four times, and τ2 runs twice,
while τ3 only has a single execution. A fixed-priority pre-emptive scheduler of RT-Preempt
handles the execution of real-time tasks. Thus, it can be seen that τ3 is being pre-empted by
τ1 and τ2 at specific points of its execution. The results show that the Python real-time test
implementations also have priority preemption.

Electronics 2023, 12, 1426 6 of 14
Electronics 2023, 12, x FOR PEER REVIEW 6 of 14

Figure 3. Real−time task periodicity using the oscilloscope in C/C++.

The figure of the waveforms uses a method of toggling GPIO when the task is run-
ning. It can be observed that for a single hyper-period, τ1 runs four times, and τ2 runs
twice, while τ3 only has a single execution. A fixed-priority pre-emptive scheduler of RT-
Preempt handles the execution of real-time tasks. Thus, it can be seen that τ3 is being pre-
empted by τ1 and τ2 at specific points of its execution. The results show that the Python
real-time test implementations also have priority preemption.

Table 3 shows the timing measurements of periodicity and response time in an idle
environment without stress. In the period metric, both the C/C++ and Python implemen-
tations meet the mean duration of τ1, τ2, and τ3. Regarding the maximum values, it can be
seen that the Python implementation has higher values compared to C/C++, with 10.088
ms, 20.222 ms, and 40.312 ms, respectively, for the real-time tasks. These slight differences
are negligible relative to the total number of data samples and the minimal change in the
standard deviation (Sdev).

Table 3. Period and Response time of Real-Time Task in idle environment.

Metric
C/C++

τ1 τ2 τ3

Period
[ms]

Mean 10.000 20.000 40.000
Min 9.954 19.948 39.949
Max 10.048 20.051 40.051
Sdev 0.003 0.004 0.004

Response
[ms]

Mean 3.008 8.017 29.021
Min 3.006 8.014 29.019
Max 3.056 8.067 29.068
Sdev 0.002 0.003 0.003

Metric
Python

τ1 τ2 τ3

Period
[ms]

Mean 10.000 20.000 40.000
Min 9.918 19.783 39.693
Max 10.088 20.222 40.312
Sdev 0.023 0.038 0.013

Response
[ms]

Mean 3.064 8.136 29.184
Min 3.041 8.106 29.135
Max 3.190 8.399 29.441
Sdev 0.016 0.020 0.013

Figure 3. Real−time task periodicity using the oscilloscope in C/C++.

Table 3 shows the timing measurements of periodicity and response time in an idle
environment without stress. In the period metric, both the C/C++ and Python imple-
mentations meet the mean duration of τ1, τ2, and τ3. Regarding the maximum values,
it can be seen that the Python implementation has higher values compared to C/C++,
with 10.088 ms, 20.222 ms, and 40.312 ms, respectively, for the real-time tasks. These slight
differences are negligible relative to the total number of data samples and the minimal
change in the standard deviation (Sdev).

Table 3. Period and Response time of Real-Time Task in idle environment.

Metric
C/C++

τ1 τ2 τ3

Period
[ms]

Mean 10.000 20.000 40.000
Min 9.954 19.948 39.949
Max 10.048 20.051 40.051
Sdev 0.003 0.004 0.004

Response
[ms]

Mean 3.008 8.017 29.021
Min 3.006 8.014 29.019
Max 3.056 8.067 29.068
Sdev 0.002 0.003 0.003

Metric
Python

τ1 τ2 τ3

Period
[ms]

Mean 10.000 20.000 40.000
Min 9.918 19.783 39.693
Max 10.088 20.222 40.312
Sdev 0.023 0.038 0.013

Response
[ms]

Mean 3.064 8.136 29.184
Min 3.041 8.106 29.135
Max 3.190 8.399 29.441
Sdev 0.016 0.020 0.013

The response measurement results confirm that each task meets the requirement of the
WCRT. Hence, it is possible to know whether the task operates periodically and accurately
in a real-time system that is scheduled based on a fixed priority. It is confirmed that the
WCRT expected by RMA is 3 ms at τ1, 8 ms at τ2, and 29 ms at τ3, and both C/C++ and
Python satisfy the average value. However, at the maximum value, τ2 is 8.399 ms in Python,
and τ3 is 29.441 ms, which is not satisfactory. However, if Sdev is checked, it can be seen

Electronics 2023, 12, 1426 7 of 14

that τ2 is 0.020 ms and τ3 is 0.013 ms, which satisfies WCRT with a very low probability
of occurrence.

Table 4 shows the results of the experiments in a stressed environment. To evaluate the
behavior under interfering loads, the same experimental procedures are conducted with the
following stress conditions: stress-ng utilizing 100% of the CPU and 70% of system memory.
This method emulates an environment where multiple non–real-time threads attempt to
occupy the CPU and memory resources when they are available. This test should have
minimal effect on the performance of real-time tasks with high priorities. Otherwise, it can
be concluded that real-time tasks violate real-time constraints, which may lead to missing
stringent deadlines.

Table 4. Period and Response time of Real-Time Task in stress environment.

Metric
C/C++

τ1 τ2 τ3

Period
[ms]

Mean 10.000 19.999 40.000
Min 9.935 19.929 39.935
Max 10.068 20.068 40.058
Sdev 0.009 0.014 0.010

Response
[ms]

Mean 3.018 8.035 29.041
Min 3.007 8.018 29.028
Max 3.082 8.100 29.101
Sdev 0.007 0.008 0.007

Metric
Python

τ1 τ2 τ3

Period
[ms]

Mean 10.000 20.000 40.000
Min 9.715 19.646 39.702
Max 10.262 20.298 40.282
Sdev 0.064 0.082 0.066

Response
[ms]

Mean 3.216 8.474 29.636
Min 3.060 8.219 29.287
Max 3.459 8.751 29.871
Sdev 0.066 0.067 0.069

In the results, it has been shown that the average period of all real-time tasks is equal
to the idle environment with a minimal increase in the standard deviation. The response
time also has shown a slight increase in comparison to the results in an idle environment.
Even with their increased response times, all of the real-time tasks have met their respective
deadlines. This means that Python-based real-time tasks with high priorities are scheduled
as expected and are able to satisfy real-time constraints even in an environment with
multiple non–real-time threads.

2.3.2. Interrupt Response

Embedded environments often require interaction with different external devices and
interrupt response times for controllers because of the interaction in fields such as robots,
industrial devices, and communication. Therefore, it is important to measure the interrupt
latency when the Python-based real-time system is implemented.

Interrupt latency measurement experiments use GPIO on embedded boards, one as
an external interrupt input pin and the second as an output pin for measuring the interrupt
response time. A 1 kHz square wave reference signal is input to an interrupt pin set to
detect the input pin’s rising and falling edge. In a service routine executed by an interrupt
caused by edge detection, enter the status value of the input pin as the control value of
the output pin to measure the skew of the reference signal and the output pin as obtained

Electronics 2023, 12, 1426 8 of 14

by the oscilloscope. Here, the skew of the two signal measurements refers to the interrupt
response time.

Additionally, the experimental process is measured for five minutes, and the GPIO
interrupt function is implemented using the wiringPi library. The results are compared and
analyzed by implementing both C/C++ and Python.

Figure 4 shows the C/C++ and Python implementation interrupt responses. According
to the skew results, Python averaged 24.225 µs, reaching up to 83.196 µs, and C/C++
averaged 20.640 µs, reaching up to 68.012 µs. The standard deviation is 3.756 µs for C/C++
and 3.782 us for Python, showing very similar deviations. Comparing each difference,
3.585 µs is shown at the average value, and 15.184 µs is shown at the maximum value, but
when comparing Sdev, it can be seen as an outlier. As a result, the interrupt response shows
similar performance between Python and C/C++.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 14

Interrupt latency measurement experiments use GPIO on embedded boards, one as
an external interrupt input pin and the second as an output pin for measuring the inter-
rupt response time. A 1 kHz square wave reference signal is input to an interrupt pin set
to detect the input pin’s rising and falling edge. In a service routine executed by an inter-
rupt caused by edge detection, enter the status value of the input pin as the control value
of the output pin to measure the skew of the reference signal and the output pin as ob-
tained by the oscilloscope. Here, the skew of the two signal measurements refers to the
interrupt response time.

Additionally, the experimental process is measured for five minutes, and the GPIO
interrupt function is implemented using the wiringPi library. The results are compared
and analyzed by implementing both C/C++ and Python.

Figure 4 shows the C/C++ and Python implementation interrupt responses. Accord-
ing to the skew results, Python averaged 24.225 µs, reaching up to 83.196 µs, and C/C++
averaged 20.640 µs, reaching up to 68.012 µs. The standard deviation is 3.756 µs for C/C++
and 3.782 us for Python, showing very similar deviations. Comparing each difference,
3.585 µs is shown at the average value, and 15.184 µs is shown at the maximum value, but
when comparing Sdev, it can be seen as an outlier. As a result, the interrupt response
shows similar performance between Python and C/C++.

Figure 4. Interrupt response of C/C++ and python in the RT−Preempt patched Linux kernel.

2.3.3. Discussion
The feasibility of the Python real-time system implemented through this experiment

was researched through periodicity and responsiveness, as well as preemption and inter-
rupt responsiveness. It was confirmed that preemption and periodicity according to pri-
ority were observed, and there was no significant difference in interrupt response perfor-
mance. However, in response performance, there were cases in which Python did not sat-
isfy the WCRT predicted.

This result shows that Python is not satisfied with real-time systems with hard con-
straints, but it will be fully available in real-time systems with soft constraints. This paper
can also serve as a springboard for flexible integration with existing studies of machine
learning and numerical analysis on real-time systems for use in various areas, such as data
analytics, robotics, and industrial control, which require execution and safety.

3. Experimental Validation
This chapter describes the experimental environment and method for verifying the

feasibility of the implemented Python-based real-time control system and discusses the
experimental results.

Figure 4. Interrupt response of C/C++ and python in the RT−Preempt patched Linux kernel.

2.3.3. Discussion

The feasibility of the Python real-time system implemented through this experiment
was researched through periodicity and responsiveness, as well as preemption and interrupt
responsiveness. It was confirmed that preemption and periodicity according to priority
were observed, and there was no significant difference in interrupt response performance.
However, in response performance, there were cases in which Python did not satisfy the
WCRT predicted.

This result shows that Python is not satisfied with real-time systems with hard con-
straints, but it will be fully available in real-time systems with soft constraints. This paper
can also serve as a springboard for flexible integration with existing studies of machine
learning and numerical analysis on real-time systems for use in various areas, such as data
analytics, robotics, and industrial control, which require execution and safety.

3. Experimental Validation

This chapter describes the experimental environment and method for verifying the
feasibility of the implemented Python-based real-time control system and discusses the
experimental results.

3.1. Environment

The environment used to implement the EtherCAT Master using a Python-based
real-time system for this paper is shown in Table 5. The control unit uses the Intel MIO-
5272U-U6A1E x86-based single board computer (SBC) used in industrial embedded systems
and the low-power Intel i7-6600U processor, 8GB of DDR4 RAM, and an Intel i219 network
controller with an e1000e driver.

Electronics 2023, 12, 1426 9 of 14

Table 5. Python EtherCAT Master Development Environment.

Item Description

Master
Board MIO-5272U-U6A1E
CPU Intel i7-6600U
Memory DDR4 8GB
Network Controller intel i219
Linux Kernel kernel 4.14.134-rt63
OS Distribution Lubuntu 18.04
Python 3.6.9
EtherCAT Master IgH EtherCAT Master 1.5.2

Slave-1
Product LS Mecapion L7N Servo Drive

PDO 26 bytes for each slave
(RxPDO 13 bytes, TxPDO 13 bytes)

Slave-2
Product Beckhoff EL2024 Digital Output

PDO 1 byte for each slave
(RxPDO 1 byte, TxPDO 0 bytes)

To build a real-time system environment for the EtherCAT Master using a Python-
based real-time system on this platform, kernel 4.14.134-rt63, a stable version compatible
with the EtherCAT master of the RT-PREEMPT-patched Linux kernel, is used. To ensure
maximum real-time performance, the kernel uses a method suggested in previous studies
to set kernel options for the power management and debugger sections [20]. Power
management is an essential factor related to the latency of real-time systems and should
be disabled.

Kernel debugging features are another source of latency that affects real-time require-
ments. In particular, KGDB functions, which are debuggers used to examine variables, the
call stack information, and memory usage all affect the latency. Therefore, KGDB must be
disabled. Similarly, Lubuntu is used to prevent real-time performance degradation due to
the GUI and uses the latest Python version, 3.6.9, which can be applied accordingly.

The EtherCAT master uses the open-source IgH EtherCAT master, using version 1.5.2,
which is known to be stable [21]. It also uses the Ctypes module to configure the IgH
EtherCAT master shared library to interface with Python.

The EtherCAT slaves to be used to verify and test the implemented Python-based
real-time system use LS Mecapion L7N servo drives and the Beckhoff EL2024 digital output.
The PDO (process data object) used for communication is 13 bytes for transmission and
reception for the servo devices and 1 byte for the digital IO.

This development environment can be an example of a real-time embedded system’s
platform selection and system environment configuration for controlling industrial machinery.

3.2. Experimental Method

To verify the operation and performance of the Python-based real-time control system
implemented in this paper and apply it with EtherCAT, the periodicity, responsiveness,
and synchronous tasks were measured using EtherCAT.

The application was executed through a real-time task of 1 ms using the Python-based
real-time system and EtherCAT implemented in this paper. Python real-time tasks period
and response time were measured. The period refers to the difference between the last start
time and the current start time of the task, and the response time refers to the time from
the task’s current start time to EtherCAT transmission and reception and data processing.
In addition, to reduce the overhead as much as possible when measuring the period and
response time, these data were stored in a pre-generated NumPy array.

The configuration layout and actual images of the EtherCAT testbed used in the
experiment are shown in Figures 5 and 6, respectively.

Electronics 2023, 12, 1426 10 of 14

Electronics 2023, 12, x FOR PEER REVIEW 10 of 14

3.2. Experimental Method
To verify the operation and performance of the Python-based real-time control sys-

tem implemented in this paper and apply it with EtherCAT, the periodicity, responsive-
ness, and synchronous tasks were measured using EtherCAT.

The application was executed through a real-time task of 1 ms using the Python-
based real-time system and EtherCAT implemented in this paper. Python real-time tasks
period and response time were measured. The period refers to the difference between the
last start time and the current start time of the task, and the response time refers to the
time from the task’s current start time to EtherCAT transmission and reception and data
processing. In addition, to reduce the overhead as much as possible when measuring the
period and response time, these data were stored in a pre-generated NumPy array.

The configuration layout and actual images of the EtherCAT testbed used in the ex-
periment are shown in Figures 5 and 6, respectively.

Figure 5. Environment diagram of the EtherCAT Master using Python-based real-time control sys-
tem.

Figure 6. Environment picture of the EtherCAT Master using Python-based real-time control sys-
tem.

The experiment used two digital outputs and three servos, with 1 byte for the digital
outputs and 26 bytes for the servos. Data amounting to 80 bytes were exchanged during
one control period.

The digital outputs (see Figure 5) executed the toggle control task every period and
were configured at both ends of the EtherCAT network topology to measure the output
pin of position 1 and the output pin of position 6 through an oscilloscope. For the servo, 1
Hz of sine control was performed up to −90 to 90 degrees, with the control being operated
correctly. The experiment lasted a total of 5 min. It measured the period, response time,
and position of the EtherCAT servo every 1 ms, which was the task period, and a total of
300,000 sample data were obtained. At the same time, the EtherCAT digital output pin was
measured using an oscilloscope to measure the actual control period and synchronization
of the EtherCAT slave device.

Figure 5. Environment diagram of the EtherCAT Master using Python-based real-time control system.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 14

3.2. Experimental Method
To verify the operation and performance of the Python-based real-time control sys-

tem implemented in this paper and apply it with EtherCAT, the periodicity, responsive-
ness, and synchronous tasks were measured using EtherCAT.

The application was executed through a real-time task of 1 ms using the Python-
based real-time system and EtherCAT implemented in this paper. Python real-time tasks
period and response time were measured. The period refers to the difference between the
last start time and the current start time of the task, and the response time refers to the
time from the task’s current start time to EtherCAT transmission and reception and data
processing. In addition, to reduce the overhead as much as possible when measuring the
period and response time, these data were stored in a pre-generated NumPy array.

The configuration layout and actual images of the EtherCAT testbed used in the ex-
periment are shown in Figures 5 and 6, respectively.

Figure 5. Environment diagram of the EtherCAT Master using Python-based real-time control sys-
tem.

Figure 6. Environment picture of the EtherCAT Master using Python-based real-time control sys-
tem.

The experiment used two digital outputs and three servos, with 1 byte for the digital
outputs and 26 bytes for the servos. Data amounting to 80 bytes were exchanged during
one control period.

The digital outputs (see Figure 5) executed the toggle control task every period and
were configured at both ends of the EtherCAT network topology to measure the output
pin of position 1 and the output pin of position 6 through an oscilloscope. For the servo, 1
Hz of sine control was performed up to −90 to 90 degrees, with the control being operated
correctly. The experiment lasted a total of 5 min. It measured the period, response time,
and position of the EtherCAT servo every 1 ms, which was the task period, and a total of
300,000 sample data were obtained. At the same time, the EtherCAT digital output pin was
measured using an oscilloscope to measure the actual control period and synchronization
of the EtherCAT slave device.

Figure 6. Environment picture of the EtherCAT Master using Python-based real-time control system.

The experiment used two digital outputs and three servos, with 1 byte for the digital
outputs and 26 bytes for the servos. Data amounting to 80 bytes were exchanged during
one control period.

The digital outputs (see Figure 5) executed the toggle control task every period and
were configured at both ends of the EtherCAT network topology to measure the output pin
of position 1 and the output pin of position 6 through an oscilloscope. For the servo, 1 Hz
of sine control was performed up to −90 to 90 degrees, with the control being operated
correctly. The experiment lasted a total of 5 min. It measured the period, response time,
and position of the EtherCAT servo every 1 ms, which was the task period, and a total of
300,000 sample data were obtained. At the same time, the EtherCAT digital output pin was
measured using an oscilloscope to measure the actual control period and synchronization
of the EtherCAT slave device.

3.3. Experimental Results

The operation period and response time measurement results of the task described
above are summarized in terms of statistical values, in this case, the mean, maximum (Max),
minimum (Min), and standard deviation (Std), as shown in Table 6.

Table 6. Task Response time and Period Measurement Result.

Metric Response Time [ms] Period [ms]

Mean 0.077 1
Max 0.131 1.238
Min 0.069 0.766
Std 0.004 0.001

Electronics 2023, 12, 1426 11 of 14

As a result of the response time measurement, it was confirmed that the EtherCAT
data transmission data processing and transmission operations were completed within
the task operation period with a maximum of 0.131 ms, a minimum of 0.069 ms, and an
average of 0.077 ms. In the periodic measurement results, the average operating period
was 1 ms, but the maximum operating period was 1.238 ms, and the minimum period was
0.766 ms. This exceeded 1 ms, but this occurred once among 300,000 samples.

A histogram of the Z−scores calculated using Equation (2) to interpret the periodic
measurement data probabilistic statistically is shown in Figure 7.

Z =
χ− µ

σ
(2)

Electronics 2023, 12, x FOR PEER REVIEW 11 of 14

3.3. Experimental Results
The operation period and response time measurement results of the task described

above are summarized in terms of statistical values, in this case, the mean, maximum
(Max), minimum (Min), and standard deviation (Std), as shown in Table 6.

Table 6. Task Response time and Period Measurement Result.

Metric Response Time [ms] Period [ms]
Mean 0.077 1
Max 0.131 1.238
Min 0.069 0.766
Std 0.004 0.001

As a result of the response time measurement, it was confirmed that the EtherCAT
data transmission data processing and transmission operations were completed within
the task operation period with a maximum of 0.131 ms, a minimum of 0.069 ms, and an
average of 0.077 ms. In the periodic measurement results, the average operating period
was 1 ms, but the maximum operating period was 1.238 ms, and the minimum period was
0.766 ms. This exceeded 1 ms, but this occurred once among 300,000 samples.

A histogram of the Z−scores calculated using Equation (2) to interpret the periodic
measurement data probabilistic statistically is shown in Figure 7. 𝛧 = 𝜒 − 𝜇𝜎 (2)

Figure 7. Histogram of the task period shown using Z−scores.

Through the calculations, the Z value can be used to determine the position of the
measured data value in terms of the standard deviation. The ratio and probability of the
normal distribution of the data can be determined by expressing these factors as a histo-
gram [18].

The positions of the values 0, 1, 2, and 3 on the Z-score chart shown in Figure 7 have
corresponding meanings identical to µ, σ, 2σ, and 3σ in a normal distribution, respec-
tively. Thus, the Z-scores of −3 and 3 can be seen as −3σ and 3σ and −3σ and 3σ, respec-
tively. It can also be seen that 99.7% of all data are distributed between these 3σ values,
meaning that they are a good measure for determining the periodicity of real-time tasks.
In addition, if the raw data of the Z-score −3 and 3 positions are obtained as shown in

Figure 7. Histogram of the task period shown using Z−scores.

Through the calculations, the Z value can be used to determine the position of the
measured data value in terms of the standard deviation. The ratio and probability of
the normal distribution of the data can be determined by expressing these factors as a
histogram [18].

The positions of the values 0, 1, 2, and 3 on the Z-score chart shown in Figure 7 have
corresponding meanings identical to µ, σ, 2σ, and 3σ in a normal distribution, respectively.
Thus, the Z-scores of −3 and 3 can be seen as −3σ and 3σ and −3σ and 3σ, respectively. It
can also be seen that 99.7% of all data are distributed between these 3σ values, meaning
that they are a good measure for determining the periodicity of real-time tasks. In addition,
if the raw data of the Z-score −3 and 3 positions are obtained as shown in Equation (3),
99.7% of the total measurement period is distributed between 0.9961 ms and 1.0039 ms.

χ = µ + σZ (3)

Figure 8 shows the results after measuring the synchronicity of the two signals using
an oscilloscope to locate the digital outputs at both ends of the actual hardware control
period and the EtherCAT network topology.

Electronics 2023, 12, 1426 12 of 14

Electronics 2023, 12, x FOR PEER REVIEW 12 of 14

Equation (3), 99.7% of the total measurement period is distributed between 0.9961 ms and
1.0039 ms. 𝜒 = 𝜇 𝜎𝛧 (3)

Figure 8 shows the results after measuring the synchronicity of the two signals using
an oscilloscope to locate the digital outputs at both ends of the actual hardware control
period and the EtherCAT network topology.

Figure 8. Digital output control period and skew measurement results.

The digital output can be toggled for every 1 ms period, allowing the oscilloscope to
predict a measurement period of 2 ms when taking measurements. The measurement re-
sults showed that the digital output of position 1 was measured and found to have an
average period of 1.99 ms and a maximum period of 2.04 ms. The digital output of position
6 was also measured, showing an average period of 1.99 ms and a maximum period of
2.04 ms. Both signals had a standard deviation of 4.6 us and an expected toggle control
period of 2.0 ms. In addition, skew measurements of the two signals showed that they had
an average of 1.45 us, a maximum of 2.5 us, a minimum of 0.68 us, and a standard devia-
tion of 0.18 us.

Figure 9 shows the result after measuring the position feedback data of three servo
drivers for every 1 ms period, the control reference position at 2−3 s, and the position data
of each servo driver.

Figure 9. Servo position control feedback data measurement result.

Figure 8. Digital output control period and skew measurement results.

The digital output can be toggled for every 1 ms period, allowing the oscilloscope
to predict a measurement period of 2 ms when taking measurements. The measurement
results showed that the digital output of position 1 was measured and found to have an
average period of 1.99 ms and a maximum period of 2.04 ms. The digital output of position
6 was also measured, showing an average period of 1.99 ms and a maximum period of
2.04 ms. Both signals had a standard deviation of 4.6 us and an expected toggle control
period of 2.0 ms. In addition, skew measurements of the two signals showed that they
had an average of 1.45 us, a maximum of 2.5 us, a minimum of 0.68 us, and a standard
deviation of 0.18 us.

Figure 9 shows the result after measuring the position feedback data of three servo
drivers for every 1 ms period, the control reference position at 2−3 s, and the position data
of each servo driver.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 14

Equation (3), 99.7% of the total measurement period is distributed between 0.9961 ms and
1.0039 ms. 𝜒 = 𝜇 𝜎𝛧 (3)

Figure 8 shows the results after measuring the synchronicity of the two signals using
an oscilloscope to locate the digital outputs at both ends of the actual hardware control
period and the EtherCAT network topology.

Figure 8. Digital output control period and skew measurement results.

The digital output can be toggled for every 1 ms period, allowing the oscilloscope to
predict a measurement period of 2 ms when taking measurements. The measurement re-
sults showed that the digital output of position 1 was measured and found to have an
average period of 1.99 ms and a maximum period of 2.04 ms. The digital output of position
6 was also measured, showing an average period of 1.99 ms and a maximum period of
2.04 ms. Both signals had a standard deviation of 4.6 us and an expected toggle control
period of 2.0 ms. In addition, skew measurements of the two signals showed that they had
an average of 1.45 us, a maximum of 2.5 us, a minimum of 0.68 us, and a standard devia-
tion of 0.18 us.

Figure 9 shows the result after measuring the position feedback data of three servo
drivers for every 1 ms period, the control reference position at 2−3 s, and the position data
of each servo driver.

Figure 9. Servo position control feedback data measurement result. Figure 9. Servo position control feedback data measurement result.

Electronics 2023, 12, 1426 13 of 14

The servo driver performed −90 to 90 degree 1 Hz sine position control, as shown in
Figure 9. When zoomed in around 2.5 s, the control response of approximately 25 ms is
observable, indicating the performance of the position controller built into the servo driver.
The results of the confirmed feedback data show that position control of the servo motor
via EtherCAT was performed correctly.

As a result of the experiment, it was confirmed that precise control was possible
through servo driver position control feedback data, with the performance of the imple-
mented Python EtherCAT master verified by confirming an average simultaneity of 1.45 ms
and the 1 ms constant period control. In addition, environments using motors and I/O,
such as those in this experiment, can be used in applications such as conveyor belts, assem-
bly processes, and industrial factories [22], with the use of Python-based programming
languages enabling the flexible integration of technologies such as artificial intelligence
and big data with EtherCAT control applications.

4. Conclusions

To demonstrate the feasibility of real-time systems in Python, we implemented real-
time tasks in Python using the Ctypes module in a real-time Linux environment. We
compared the real-time metrics of periodicity and responsiveness in Python and C/C++
languages. The statistical results always showed promising results in C/C++. While Python
could be easily and rapidly implemented in the experimental condition, C/C++ had the
disadvantage of being somewhat complicated and time-consuming concerning its coding
and compiling processes. Lastly, an environment was built using EtherCAT Fieldbus-
based servo motors and digital outputs used in actual industrial sites, and periodicity and
synchronicity were measured through a python-based real-time control system experiment
also performed statistical analysis using Z−score.

As a result, Python was shown to work in a real-time environment, task periodicity was
satisfied, priority-based preemption occurred, and the feasibility of Python was researched
on a real-time control system.

The results here can be applied to industrial controllers, robots, and the mobility field
where real-time performance is required, and this method can extend the limits and relax
the constraints of real-time performance with Python, enabling integration with real-time
systems in various fields, such as artificial intelligence(AI), data science, and networking.

For future studies, as shown in RT−AIDE, performance evaluations and research using
a greater variety of real-time metrics will be conducted to improve experiment and analysis
methods, including power consumption, which may be applied only to RT-Preempt but
also to several RTOSs, and both non–real-time and real-time types. In addition, we will be
conducting research on intelligent control systems leveraging machine learning and neural
network inference for service and industrial robots [23–25].

Author Contributions: S.Y.C. and R.D. contributed equally to this paper. The joint first authors
surveyed the background of this research, conceptualized and developed the software and environ-
ment, formulated the experiment procedures, and analyzed the results of the experiments. B.W.C.
supervised and supported this study. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has been financially supported by SeoulTech (Seoul National University of
Science and Technology).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2023, 12, 1426 14 of 14

References
1. Kim, M. Guaranteeing That Multilevel Prioritized DNN Models on an Embedded GPU Have Inference Performance Proportional

to Respective Priorities. IEEE Embed. Syst. Lett. 2022, 14, 83–86. [CrossRef]
2. Meyer, E.; Robinson, H.; Rasheed, A.; San, O. Taming an Autonomous Surface Vehicle for Path Following and Collision Avoidance

Using Deep Reinforcement Learning. IEEE Access 2020, 8, 41466–41481. [CrossRef]
3. Stephen Cass Top Programming Languages 2021. Available online: https://spectrum.ieee.org/top-programming-languages-2021

(accessed on 10 February 2023).
4. Ian Skerrett Profile of an Iot Developer: Results of the Iot Developer Survey. Available online: https://ianskerrett.wordpress.

com/2016/04/14/profile-of-an-iot-developer-results-of-the-iot-developer-survey (accessed on 10 February 2023).
5. Reghenzani, F.; Massari, G.; Fornaciari, W. The Real-Time Linux Kernel: A Survey on PREEMPT_RT. ACM Comput. Surv. 2019, 52,

1–36. [CrossRef]
6. Krishna, C.M. Fault-Tolerant Scheduling in Homogeneous Real-Time Systems. ACM Comput. Surv. 2014, 46, 1–34. [CrossRef]
7. Devaraj, R.; Sarkar, A. Resource-Optimal Fault-Tolerant Scheduler Design for Task Graphs Using Supervisory Control. IEEE

Trans. Industr. Inform. 2021, 17, 7325–7337. [CrossRef]
8. Jerome Joseph, T.; Swaminathan, J. An Experimental Study of Parallelism in Different Python Frameworks. In Proceedings of the

2022 International Conference on Inventive Computation Technologies (ICICT), Kathmandu, Nepal, 20–22 July 2022; pp. 363–366.
9. Ionescu, V.M.; Enescu, F.M. Investigating the Performance of MicroPython and C on ESP32 and STM32 Microcontrollers. In

Proceedings of the 2020 IEEE 26th International Symposium for Design and Technology in Electronic Packaging (SIITME), Pitesti,
Romania, 21–24 October 2020; pp. 234–237.

10. Bucher, R. Practical Experiences with Python and Linux RT at the SUPSI Laboratory. IFAC-PapersOnLine 2019, 52, 133–138.
[CrossRef]

11. Jun, L.; Ling, L. Comparative Research on Python Speed Optimization Strategies. In Proceedings of the 2010 International
Conference on Intelligent Computing and Integrated Systems, Guilin, China, 22–24 October 2010; pp. 57–59.

12. Python Software Foundation Ctypes—A Foreign Function Library for Python. Available online: https://docs.python.org/3/
library/ctypes.html (accessed on 10 February 2023).

13. Carvalho, A.; Machado, C.; Moraes, F. Raspberry Pi Performance Analysis in Real-Time Applications with the RT-Preempt Patch.
In Proceedings of the 2019 Latin American Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR) and 2019
Workshop on Robotics in Education (WRE), Rio Grande do Sul, Brazil, 22–26 October 2019; pp. 162–167.

14. Wang, S.; Ouyang, J.; Li, D.; Liu, C. An Integrated Industrial Ethernet Solution for the Implementation of Smart Factory. IEEE
Access 2017, 5, 25455–25462. [CrossRef]

15. Delgado, R.; Park, J.; Choi, B.W. Open Embedded Real-Time Controllers for Industrial Distributed Control Systems. Electronics
2019, 8, 223. [CrossRef]

16. Lee, S.-Y.; Sung, M. Design and Implementation of an Ethernet-Based Linear Motor Drive for Industrial Transport Systems. IEEE
Access 2021, 9, 33061–33074. [CrossRef]

17. Chan, C.-C.; Tsai, C.-C. Collision-Free Speed Alteration Strategy for Human Safety in Human-Robot Coexistence Environments.
IEEE Access 2020, 8, 80120–80133. [CrossRef]

18. Delgado, R.; Jo, Y.H.; Choi, B.W. RT-AIDE: A RTOS-Agnostic and Interoperable Development Environment for Real-Time Systems.
IEEE Trans. Industr. Inform. 2022, 19, 2772–2781. [CrossRef]

19. King, C.I. Stress-Ng. Available online: https://github.com/ColinIanKing/stress-ng (accessed on 1 March 2023).
20. Delgado, R.; Choi, B.W. New Insights into the Real-Time Performance of a Multicore Processor. IEEE Access 2020, 8, 186199–186211.

[CrossRef]
21. Florian, P. IgH EtherCAT Master1.5.2 Documentation. Available online: https://www.etherlab.org/download/ethercat/ethercat-

1.5.2.pdf (accessed on 10 February 2023).
22. Akpinar, K.O.; Ozcelik, I. Analysis of Machine Learning Methods in EtherCAT-Based Anomaly Detection. IEEE Access 2019, 7,

184365–184374. [CrossRef]
23. Yasar, M.S.; Evans, D.; Alemzadeh, H. Context-Aware Monitoring in Robotic Surgery. In Proceedings of the 2019 International

Symposium on Medical Robotics (ISMR), Atlanta, GA, USA, 3–5 April 2019; pp. 1–7.
24. Li, Z.; Hutchinson, K.; Alemzadeh, H. Runtime Detection of Executional Errors in Robot-Assisted Surgery. In Proceedings of the

2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 23–27 May 2022; pp. 3850–3856.
25. Long, Y.; Wu, J.Y.; Lu, B.; Jin, Y.; Unberath, M.; Liu, Y.-H.; Heng, P.A.; Dou, Q. Relational Graph Learning on Visual and Kinematics

Embeddings for Accurate Gesture Recognition in Robotic Surgery. In Proceedings of the 2021 IEEE International Conference on
Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 13346–13353.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/LES.2021.3129769
http://doi.org/10.1109/ACCESS.2020.2976586
https://spectrum.ieee.org/top-programming-languages-2021
https://ianskerrett.wordpress.com/2016/04/14/profile-of-an-iot-developer-results-of-the-iot-developer-survey
https://ianskerrett.wordpress.com/2016/04/14/profile-of-an-iot-developer-results-of-the-iot-developer-survey
http://doi.org/10.1145/3297714
http://doi.org/10.1145/2534028
http://doi.org/10.1109/TII.2020.3042161
http://doi.org/10.1016/j.ifacol.2019.08.137
https://docs.python.org/3/library/ctypes.html
https://docs.python.org/3/library/ctypes.html
http://doi.org/10.1109/ACCESS.2017.2770180
http://doi.org/10.3390/electronics8020223
http://doi.org/10.1109/ACCESS.2021.3060856
http://doi.org/10.1109/ACCESS.2020.2988654
http://doi.org/10.1109/TII.2022.3182790
https://github.com/ColinIanKing/stress-ng
http://doi.org/10.1109/ACCESS.2020.3029858
https://www.etherlab.org/download/ethercat/ethercat-1.5.2.pdf
https://www.etherlab.org/download/ethercat/ethercat-1.5.2.pdf
http://doi.org/10.1109/ACCESS.2019.2960497

	Introduction
	Python-Based Real-Time System
	Python-Based Real-Time System Architecture
	Interface Real-Time Library to Python
	Performance in a Multi-Tasking Environment
	Periodicity and Responsiveness
	Interrupt Response
	Discussion

	Experimental Validation
	Environment
	Experimental Method
	Experimental Results

	Conclusions
	References

